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Institut Galilée, Université Paris-Nord, Avenue J-B Clément, 93430 Villetaneuse, France

Received 19 November 2003
Published 27 February 2004
Online at stacks.iop.org/JPhysCM/16/1849 (DOI: 10.1088/0953-8984/16/10/016)

Abstract
The description of surface and size effects in ferroelectrics is based on the
combined contribution of surface free energy density and gradient dependent
terms occurring in the volume free energy density. The dynamics of the
polarization waves and, consequently, the optical properties in the infrared
range, can be significantly affected in the case of small enough soft mode
damping, even in the paraelectric phase at temperatures above those of the
ordered ferroelectric state. Reflection and transmission spectra for semi-
infinite media and thin films are calculated within this model, using the
orders of magnitude generally published in the literature for ferroelectric
oxides as regards the values of the physical parameters. It is shown that
the tangential and the normal interface extrapolation lengths, as well as the
bulk gradient coefficient related to the model studied, could be subjected to a
spectroscopical evaluation. The frequencies of the sharp singularities appearing
in the transmission and reflection spectra are given with an excellent precision
by the frequencies of the surface and of the guided modes calculated in the
electrostatic approximation for wavevector equal to zero, thus providing a rather
simple way of determining the pertinent physical quantities.

1. Introduction

Size effects in ferroelectrics materials have been, since the 1970s, a subject of theoretical and
experimental interest and are still, for the time being, of importance due to the integration
of nanosized ferroelectric oxides into microelectronic devices. In particular it is generally
expected that surfaces, in small particles or in thin films, will induce a variation of the
polarization field in their neighbourhood with consequences for the critical temperature for
ferroelectric transition [1–10] and the question of a critical thickness in thin films for the
existence of ferroelectricity remains a subject of current interest [11].
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A microscopic effective Hamiltonian, based on first-principles calculations, was recently
used to give some insight into this last question [12, 13], but until now most of the
theoretical studies on low size ferroelectrics were made in the framework of the modified
phenomenological Landau–Devonshire theory. This is performed by the addition of:

(i) a gradient term (S/2)|∇ P|2 in the free energy density to take into account the non-
homogeneity of the polarization,

(ii) a surface energy term, generally described by introduction of an ‘extrapolation length’ �

which can be positive or negative (� positive (negative) involves a decrease (increase) of
the polarization at the surface).

To our knowledge there has been no direct experimental evaluation of the value of �; the
only available values are the ones given by Wang et al chosen to fit the Curie temperatures of
small particles and used after them by other authors [7–10]. Recently Chew et al proposed far
infrared reflection (FIR) measurements to determine surface and size effects in ferroelectric
thin films [14, 15] arguing that, in their calculations, the effects of � on the reflection curves
are qualitatively different, and can be distinguished from those induced by the coefficient S of
the gradient term. Indeed a physical consequence of the introduction of a gradient term in the
free energy density is to make the ferroelectric a spatially dispersive medium (the dielectric
constant depends on the wavevector). So, as discussed in detail by Maradudin and Mills [16]
in a calculation of the reflectivity of the surface of a semi-infinite dielectric medium with
spatial dispersion, there are, in the case of a TE incident plane wave, two polariton modes (or
three in the case of TM incident light) which propagate or not in the medium, depending on the
incident wave frequency. In particular, at normal incidence, a wave with a large wavevector can
propagate in the usual stop band between the transverse optical frequency and the longitudinal
one, and can, on one hand, reduce the reflectivity in the low frequency side of the stop band
and, on the other hand, give rise to interference fringes in the film which works like a Fabry–
Perot interferometer [14]. In their study, Chew et al emphasize the distinctly different effects
of the parameters S and � on the position and on the intensity of the fringes appearing in the
restrahlung band of the ferroelectric. However, they do not consider the effect of � on the
reflection curves in the paraelectric phase and they admit that the results obtained in the case
�−1 = 0 could be extended to any value of �. This appears to be in contradiction with the
results that we have presented in previous papers [17, 18], in which we have shown that, in
a dielectric with spatial dispersion and surface energy terms, polarization waves propagating
along the surface of a semi-infinite medium or in the plane of a slab have dispersion relations
which depend on the value and on the sign of the parameter �.

So the purpose of the present paper is to explore in detail the effect of � on the optical
reflectivity and transmissivity of ferroelectric materials, in the paraelectric phase, within the
scope of the Landau–Ginzburg theory discussed in [17], using parameters roughly related to
ferroelectric oxides [11]. In the case of TM incident waves we need two distinct extrapolation
lengths �X and �Z , and we obtain closed expressions for the reflectivity in a semi-infinite
medium and in thin films. In a semi-infinite medium the reflection curves exhibit sharp
singularities at frequencies which are very close to those of surface modes calculated in the
electrostatic approximation of [17], but which exist only in the case of negative values of �X

or �Z . In the case of thin films, with the parameters used we do not observe the fringes
exhibited by Chew et al because of the very large values of the wavevector of the wave which
propagates in the restrahlung region, but for small enough film thickness the reflection and
transmission curves present singularities at frequencies close to those of the guided modes
obtained in the electrostatic approximation. And again, in the case where �X and �Z are
negative, singularities at frequencies close to those of surface waves can be observed.
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In section 2 we begin with a review of the main features of our calculation. In section 3,
results are presented and discussed for reflectivity in a semi-infinite system in the TE and TM
geometries (section 3.1), and for reflectivity and transmission for free thin films or films on
a dielectric substrate in the same geometries (section 3.2). In each case we show that the
frequencies of the singularities which appear in the reflection curves can be approximated with
great accuracy by surface or guided mode frequencies.

2. Theoretical approach

2.1. Description of the system studied

In the following we use a model deriving from a previously discussed one [17] describing
surface effects in a spatially dispersive dielectric medium. It is based on the coupling of the
Maxwell equations with the Landau–Ginzburg equation of motion of the ionic polarization P .
The harmonic part of the volume free energy density is written as

Fv = 1
2

∑
i

{α(T − Tc)P2
i + S(∇ Pi )

2} − E · P . (1)

The index i refers to the Cartesian components (X, Y, Z : see figure 1). E is the macroscopic
electric field. The positive constant S provides spatial dispersion. As usual, the first term (in
which α > 0) induces the conventional ferroelectric phase transition, occurring at Tc in the
simplified Landau approach. In the following we maintain the temperature T significantly
above Tc, thus restricting our study to the paraelectric phase and avoiding the complications
related to the inhomogeneity of the ferroelectric state. In the medium, the equation of motion
for P is then written as

m
∂2P

∂ t2
+ α(T − Tc)P + m�

∂P

∂ t
− S∇2P = E. (2)

The positive coefficients m and � refer to an inertial and to a damping constant, respectively.
We impose a permittivity ε∞ at very high frequency, related to the electronic polarization, such
that the total polarization P is

P = P +
ε∞ − 1

4π
E. (3)

The system studied, presented in figure 1, refers to a semi-infinite spatially dispersive dielectric
medium (Z > 0) or to a slab of thickness D (−D/2 < Z < D/2). In the semi-infinite case,
we assume the presence of a conventional homogeneous dielectric medium of permittivity
ε1 for Z < 0. The slab is supposed to be surrounded by two generally distinct conventional
homogeneous dielectric media of permittivity ε1 (Z < −D/2) and ε2 (Z > D/2), respectively:
ε1 = ε2 = 1 corresponds to a film surrounded by vacuum; ε1 = 1, ε2 �= 1 corresponds to a
film lying on a substrate. Each interface induces a surface free energy density which allows
one to define a tangential (�X,(1,2) = �Y,(1,2)) and a normal (�Z,(1,2)) extrapolation length, as
pointed out in a previous paper [17]. For instance, in the case of a slab, the values of these
interface free energy densities Fs1 and Fs2 are written as

Fs1 =
∑

i

S

�i,1
(P2

i )Z=−D/2; Fs2 =
∑

i

S

�i,2
(P2

i )Z=+D/2. (4)

There result boundary conditions related to these surface terms; namely, for a slab,[
∂ Pi

∂ Z
− Pi

�i,1

]
Z=−D/2

= 0;
[
∂ Pi

∂ Z
+

Pi

�i,2

]
Z=+D/2

= 0. (5)
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Figure 1. Schematic diagrams of the systems studied.

2.2. Derivation of the optical properties

These are calculated with the help of the equation of motion, of Maxwell equations and
of boundary conditions derived from expressions (5) and from electromagnetic general
considerations. At any point in the space the electromagnetic fields consist of linear
combinations of (generalized) plane waves of common frequency� and of wavevector showing
a common in-plane real component K : � and K are fixed by an imposed incident wave of
wavevector Ki{K , 0, Qi} with Qi = (ε1�

2/c2 − K 2)1/2, where c is the velocity of light in
vacuum. We characterize the optical properties by the ratio r of the amplitudes of the reflected
wave (of wavevector Kr{K , 0,−Qi}) and of the incident one.

In the medium, it is convenient to define the permittivity ε(�, K) as a function of � and
of the wavevector K{K , 0, Q}:

ε(�, K) = ε(�, K , Q) = ε∞
�2

l − �2 − i�� + (S/m)(K 2 + Q2)

�2
t − �2 − i�� + (S/m)(K 2 + Q2)

(6)

with

�2
t = α(T − Tc)

m
; �2

l = �2
t +

4π

mε∞
. (7)

For further comparison, we also define the reference permittivity εb which accounts for the
optical properties in the absence of spatial dispersion and of surface effects:

εb = ε∞
�2

l − �2 − i��

�2
t − �2 − i��

. (8)

It results from Maxwell equations that one is faced with two independent kinds of solutions
related to TE (or s) and TM (or p) radiation, respectively. The TE solutions refer to electric
and polarization fields normal to the plane of incidence, i.e. lying along the Y -axis. The TM
solutions refer to electric and polarization fields in the plane of incidence.

It follows from

ε(�, K)∇ · E = 0 (9)

that the dispersion relations split into two sets:

ε(�, K) = 0 or ∇ · E = 0. (10)
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The cancelling of ε and the Maxwell equations imply that

E = K · E
K2

K (11)

and, consequently, that there is no component of E along the Y -axis for such a (generalized)
longitudinal wave: then, it is not of TE kind. The second set provides the usual dispersion
relation for any (generalized) transverse wave:

ε(�, K) = c2K2

�2
(12)

and is found both in TE and TM wave types.
To summarize:

(i) In the TE case, Q2 can only take two values, Q2
1 and Q2

2, in the medium [18]. They are
solutions of

ε(�, K , Q) = c2(K 2 + Q2)

�2
. (13)

Expression (13) defines a quadratic equation in Q2.
(ii) In the TM case, Q2 can take three values in the medium [18]: Q2

1, Q2
2 and, in addition,

Q2
3 with

�2
l − �2 − i�� + (S/m)(K 2 + Q2

3) = 0. (14)

This last equation provides the value Q2
3 of Q2 which cancels the permittivity ε(�, K , Q).

The result is that in a slab, the electromagnetic field is a linear combination of four
generalized plane waves for the TE solution and of six generalized plane waves for the TM
one. In the case of a semi-infinite medium, Q is subject to the additional condition Im(Q) > 0
and, consequently, the number of waves occurring is reduced to two and three for the TE and
for the TM solution, respectively. In every case the explicit value of r can be expressed by
solving a set of linear equations, as is detailed further in the appendix. Indeed, the transmission
coefficient t can also be easily evaluated. In the absence of damping, Q2

1, Q2
2 and Q2

3 are real;
depending upon the sign of Q2, the associated waves are strictly propagative (Q2 > 0) or show
an exponential behaviour along Z(Q2 < 0). In order to make precise the nature of the waves
in the medium it is helpful to introduce the bulk transverse polariton frequencies �t−(K ) and
�t+(K ); �2

t− and �2
t+ are the two (always positive) solutions of

ε(�t±, K , 0) = c2 K 2

�2
t±

. (15)

It can be easily shown that, for � < �t−, Q2
1 and Q2

2 are both negative, and that they are both
positive for � > �t+; between �t− and �t+, Q2

1 is negative and Q2
2 is positive. In addition, it

is convenient to define the bulk longitudinal polariton frequency �lp(K ) which lies between
�t−(K ) and �t+(K ):

�lp(K ) =
{
�2

l +
SK 2

m

}1/2

(16)

Q2
3 is negative for � < �lp and positive for � > �lp. Finally, note that, in order to ensure

the propagation of an incident wave, one has to achieve K <
√

ε1(�/c) (or, equivalently,
� > cK/

√
ε1). This condition is obtained at any angle of incidence θ : K = √

ε1(�/c) sin[θ ]
and Qi = √

ε1(�/c) cos[θ ].
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2.3. Simple extensions: attenuated reflection and guided modes

The validity of the expressions obtained for r is not restricted to the case of incident radiation
consisting on a conventional propagating electromagnetic plane wave: more generally, they
provide the ratio of the amplitudes of two generalized plane waves which are supposed to exist
in the dielectric of permittivity ε1 with wavevectors Ki(K , Qi) and Kr(K ,−Qi) satisfying
K 2 + Q2

i = ε1(�
2/c2). Negative values of Q2

i can be studied: they refer to evanescent waves.
Experimentally, such waves can be generated through irradiation with a large enough angle
of incidence, via a dielectric medium of permittivity exceeding ε1 lying under the system at a
certain distance. For this geometrical arrangement, the so-called attenuated reflectivity can be
easily calculated.

Another application concerns the calculation of the dispersion curves of the surface
and (in the case of films) of the guided modes. These polarization waves are defined as
excitations showing an exponential decrease outside the spatially dispersive medium studied:
such behaviour necessitates a negative Q2

i value and, since, by definition, Im(Qi) > 0, the
vanishing of the amplitude of the incident wave related to Ki: thus, if r becomes infinite,
the amplitude related to −Qi (the ‘reflected’ wave) is allowed to differ from 0, in spite of
the null amplitude related to Qi. In other words, this second condition stipulates that the
frequencies of the surface guided modes are derived through the search for the vanishing of
r−1, i.e. for the poles of r . An alternative method, based on the cancelling of the determinant
of an homogeneous set of linear equations, was previously presented [17]: indeed, it provides
identical results, but it is less convenient to use. Let us briefly recall the results:

(i) In the slabs the electrostatic approximation provides excellent evaluations of the
frequencies, except at very small K values (typically smaller than a few �t/c) [18]; all the
modes, except a TE one and a TM one, show a cut-off value of the wavevector below which
they disappear; the cut-off wavevector is related to the frequency by K = √

ε1(�/c); the
TE mode which remains allowed at any wavevector shows a frequency which is practically
given by cK/

√
ε1 at very small K .

(ii) In the case of a semi-infinite medium there are one TE and one TM surface mode only
when �X < 0; the electrostatic approximation provides excellent evaluations of their
frequencies �s(K ) but they show a cut-off wavevector which, as expected, corresponds
to a frequency identical to �t−(K ) (i.e. �s(K ) = �t−(K )).

Finally, it is interesting to note that poles of r are also related to the so-called ‘virtual
radiative modes’ which provide an alternative tool for the study of the optical properties [19, 20].

2.4. Choice of the parameters and reduced variables

Our calculations were performed using realistic values of the parameters, close to the usually
assumed ones for ferroelectric materials, for instance BaTiO3. These parameters are listed in
table 1. We took various sets of extrapolation lengths, including negative values. Up to now,
the occurrence of negative values suffers from a lack of completely convincing experimental
confirmation. As discussed in the next section, negative values lead to qualitative changes
in the reflection and transmission spectra: it then seemed to us useful to anticipate the
corresponding calculations in order to attempt to probe their existence experimentally. As
regards the damping, it was neglected in a first step, thus allowing an easier discussion. On
introducing the damping, we find that, as usual, the singularities are softened: values of ��

not exceeding a few tenths still allow one to observe dispersion and surface effects. However,
such a significant underdamping does not always occur: in the case of BaTiO3, for instance,
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Table 1. Commonly used values of the parameters.

α = 10−4 K−1

Tc = 400 K
�0 = 1013 s−1 (⇒: K0 = 3.33 × 10−5 nm−1; D0 = 3 × 104 nm)
ε∞ = 5
S = 0.1 nm2

ε1 = 1
ε2 = 1 or 3 or 5
T : from 480 to 800 K
�X,(1,2): from +3 nm to +∞ and from −∞ to −3 nm
�Z ,(1,2): from +3 nm to +∞ and from −∞ to −3 nm
γ : from 0 to 1
d: from 10−3 to 1 (⇒ D: from 30 to 3 × 104 nm)

�� remains larger than 1 in the whole paraelectric phase [21]. We shall show that for large
�� values the surface and dispersion terms affect the spectra negligibly.

In order to study the variations of r and of the reflection coefficient R = rr∗ of the
intensity, it is convenient to use reduced parameters and variables. Defining �0, K0 and D0 as
follows:

�0 = cK0 = c/D0 = αTc/m, (17)

we introduce the reduced quantities

ω = �/�0; ωt = �t/�0; ωl = �l/�0; γ = �/�0;
s = S/(mc2); ωt± = �t±/�0; ωlp = �lp/�0; k = K/K0;
qi = Qi/K0; q1 = Q1/K0; q2 = Q2/K0; q3 = Q3/K0;
x = X/D0; y = Y/D0; z = Z/D0; d = D/D0;
δi,(1,2) = �i,(1,2)/D0

(18)

where i = x, y, z or X, Y, Z . In view of further comments concerning the influence of damping
it is useful to note that the relative damping γr is generally defined as γr = �/�t . It results
that γr = γ /ωt . With the values listed in table 1, γr = 2.24γ .

In figure 2 we have reported the various domains of interest in an (ω, k) diagram. This
figure is drawn using deliberately modified values of the parameters in order to provide a
qualitative illustration of the various existing cases: the index P labels the allowed areas in the
case of an incident illuminating radiation (a, b and c indicate regions such as {Q2

1 < 0, Q2
2 > 0,

Q2
3 < 0}, {Q2

1 < 0, Q2
2 > 0, Q2

3 > 0} and {Q2
1 > 0, Q2

2 > 0, Q2
3 > 0}, respectively); the

index S refers to the occurrence of surface modes ({Q2
1 < 0, Q2

2 < 0, Q2
3 < 0}) and, finally,

G corresponds to the domains of guided modes (a: {Q2
1 < 0, Q2

2 > 0, Q2
3 < 0}; b: {Q2

1 < 0,
Q2

2 > 0, Q2
3 > 0}).

3. Optical reflection and transmission: results and discussion

3.1. Semi-infinite medium

In the following, we present the reflectivity properties of semi-infinite samples for TE and TM
polarizations. They give rise to a rather simple analytical interpretation.

3.1.1. TE propagation. The reflection spectrum does not significantly differ from the
one obtained in the case of a conventional dielectric medium with permittivity εb given by
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Figure 2. Allowed domains for the different electromagnetic regimes in the k–ω (wavevector–
frequency) plane. P: propagation outside the medium studied; S (surface) and G (guided):
evanescent behaviour outside the medium studied (for a symmetrically surrounded film). In the S
domain: Q2

1 < 0, Q2
2 < 0, Q2

3 < 0. Elsewhere: a ⇔ Q2
1 < 0, Q2

2 > 0, Q2
3 < 0; b ⇔ Q2

1 < 0,
Q2

2 > 0, Q2
3 > 0; c ⇔ Q2

1 > 0, Q2
2 > 0, Q2

3 > 0.

equation (8), except, and only when the extrapolation length δx is negative, within a small
frequency interval, as shown in figures 3 and 4: this change consists in a reflectivity peak
which grows up to the value 1 in the absence of damping. Its frequency does not vary with the
angle of incidence.

The reflection coefficient for the TE polarization does not depend upon δz and is given by

r = (qi − q1)(q2
1 − g2)(q2 + i/δx) − (qi − q2)(q2

2 − g2)(q1 + i/δx)

(qi + q1)(q2
1 − g2)(q2 + i/δx) − (qi + q2)(q2

2 − g2)(q1 + i/δx)
(19)

where

g2 = ω2 + iγω − ω2
t − sk2

s
. (20)

For γ = 0, q2 is a real number. It immediately results from (19) that

when q1 = − i

δx
r = qi − q1

qi + q1
(21)

and, therefore, R = 1. Note that, due to the condition Im(q1) > 0, this can be realized only for
δx < 0. Numerically, the orders of magnitude of the parameters provide a value of the related
frequency very close to the frequency ωsx of the TE surface mode at zero wavevector [17],
which is written as

ωsx =
(

ω2
t − s

δ2
x

)1/2

. (22)
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Figure 3. Computed TE reflection spectra for a semi-infinite medium: �X = −5 nm; θ = 5◦.
Upper row: comparison with the reference spectrum (on the right-hand side: s = 0 ⇔ permittivity
εb). Lower row: the detailed effect of damping (left column: γ = 0; right column: γ = 0.01).

Figure 4. An overview of the TE and TM computed reflection spectra for a semi-infinite medium
θ = 60◦ . The parameters used differ appreciably from the ones listed in table 1, in order to improve
visibility: ωt = 1, ωl = 2, ε∞ = 3, S�2

0 = 1.88 × 1029 nm2 s−2 (instead of 1025 in table 1),
γ = 0.01, �X = �Z = −2.25 nm. Lower line: reference (εb) spectra.

In addition, a detailed study shows that this peak of reflectivity is very sharp. The presence of
damping does not shift the frequency but drastically affects the amplitude: for γ = 0.01, the
R variation in the vicinity of ωsx does not exceed 1%.
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3.1.2. TM propagation. Here again the reflection spectrum does not significantly differ from
the one obtained in the case of a conventional dielectric medium, except in narrow frequency
intervals; the occurrence of these intervals depends upon the signs of δx and of δz . More
specifically: for δx negative one finds a peak of reflectivity very close to the frequency

ωsx =
(

ω2
t − s

δ2
x

)1/2

and for δz negative one finds a sharp reflectivity minimum very close to the frequency ωsz

where

ωsz =
(

ω2
l − s

δ2
z

)1/2

. (23)

This last frequency also corresponds to a solution for a surface mode at zero wavevector in
the electrostatic approximation [17]. More precisely, a careful examination of the reflectivity
spectrum around ωsz in the absence of damping shows that this spectrum suffers a narrow
oscillation with a R = 1 maximum immediately followed by a deep minimum. However,
we have to note that this feature near ωsz is extremely small when using the values of the
parameters listed in table 1.

In figure 4, to clearly illustrate the above results, we show spectra covering a large
frequency range obtained with modified values of ωl and of s, which enhance the singularities
in the vicinity of ωsx and that of ωsz .

To an excellent approximation the effects of the surface terms δx and δz are independent
of each other and occur in different frequency ranges. As can be observed in figure 5, both δ

coefficients provide contributions when and only when they are negative.
In the TM case, the expression for the reflectivity is less simple than in the TE configuration

(see the appendix). However, its variation near ωsx and ωsz can be explained.
To conclude, the variation of the TM reflectivity spectrum of a semi-infinite medium

versus the frequency in the paraelectric phase provides signatures of the occurrence of negative
extrapolation lengths. Unfortunately, with a damping γ exceeding about 1%, which practically
always occurs, the expected effects are presumably too weak to allow experimental observation.
We have performed some complementary calculations which indicate that the attenuated
reflection configuration does not significantly improve the observability of the surface terms.

3.2. Thin films

As pointed out above, the derivation of the surface parameters from the optical study of
semi-infinite pieces of ferroelectrics is presumably subject to experimental difficulties, due
to the weakness of the expected effects. In contrast, we show in this subsection that spatial
dispersion combined with surface terms can give rise to large effects in thin films. Due to
optical interferences the analysis of the reflection spectra is more complicated in thin films.
Fortunately, when �D/c (=ωd) 	 1, most of the typical oscillations related to the phase
variations classically observed in conventional plates disappear and one is left with the residual
contributions arising from spatial dispersion combined with surface energy terms. With the
parameter used (D0 = 30 µm) the ωd 	 1 condition is realized for D smaller than a few
hundreds of nanometres, which corresponds to films with interesting potential applications.
However, this condition has to be carefully tested since the pertinent optical paths cannot be
simply written as Re(qid)/2π but appear as Re(qmd)/2π (with m = 1, 2, 3) and can then rise
to large values, even when ωd 	 1. General expressions for the reflection and the transmission
coefficients (respectively r and t) are given in the appendix. In the following, we often choose
to show and comment on the reflectivity spectra. The transmission coefficient T of the intensity
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Figure 5. Sharp features of the TM computed reflection spectra in a semi-infinite medium: the
dependence on the signs of the extrapolation lengths. θ = 60◦; γ = 0.01; |�X | = |�Z | = 5 nm.

is deduced from the transmission coefficient t of the amplitude of the electric field through
the expressions T = ({ε2/ε1 − sin2 θ}/{1 − sin2 θ})0.5t t∗. Note that T is equal to (1 − R) in
the absence of damping (γ = 0) but that it can appreciably differ from (1 − R) even with the
small γ values generally assumed in the present study.

3.2.1. TE propagation.

Free symmetric thin film. Figure 6 shows some computed reflection spectra of symmetrical
thin films of thickness 30 and 90 nm, surrounded by vacuum (ε1 = ε2 = 1), in the case
of negative δx (�X = �X,1 = �X,2 = −5 nm), without and with damping (γ = 0, 0.01,
0.1, 0.2, i.e. γr = 0, 0.022, 0.22, 0.45). They markedly differ from the ones obtained using
the reference permittivity εb which are also shown for comparison. For larger values of γ

the difference becomes very small and, presumably, undetectable. In the reference case the
spectra are approximately centred around a maximum at ωt (R = 1 in the absence of damping);
in the films studied, for γ = 0 they present a well defined structure with several maxima at
very different frequencies. Note that these frequencies are very close to the calculated ones
for the even surface and guided modes in the electrostatic approximation at zero wavevector
(equations (23) in [17]), namely

ωex,{p} = (ω2
t + sχ2

ex,{p})
1/2 p = 0, 1, 2, 3, . . . (24)

where χex,{p} is the solution of

χδx sin[χd/2] − cos[χd/2] = 0. (25)



1860 J-P Jardin and P Moch

By convention, p = 0 corresponds to the purely imaginary solution for χ , when it exists,
i.e. when δx < 0: the frequency involved is smaller than ωt and corresponds to a surface mode.
When |δx |/d 	 1, the frequency of this mode is given approximately by equation (22). The
other p values are related to real solutions and correspond to guided modes. A careful study
of the spectra also allows one to detect extremely sharp oscillations around the frequencies of
the odd modes, which are written as

ωox,{p} = (ω2
t + sχ2

ox,{p})
1/2 p = 0, 1, 2, 3, . . . (26)

where χox,{p} is the solution of

χδx cos[χd/2] + sin[χd/2] = 0. (27)

Due to this sharpness they do not appear in figure 6. When damping is taken into account the
features related to the odd modes are no longer detectable and, as regards the even modes, the
small p values give rise to marked maxima (see ωsx (p = 0) and p = 1 in figure 6) but the
related contributions vanish when p increases. In the case of positive δx , the surface mode does
not exist but the even guided modes are still observable: the reflection spectrum differs only
weakly from the reference spectrum (see figure 7). In figure 8 we show the transmission spectra
for two films of thickness 30 nm with δx = −5 and +5 nm, respectively, assuming γ = 0.01
in both cases; as expected, the frequencies of the minima correspond to the frequencies of the
above mentioned even surface and/or guided modes.

The above described singularities persist when D is varied but their frequencies (as
expected) and their intensities change, as illustrated in figure 6. In contrast, the sweeping
of k through the variation of the angle of incidence or through the simulation of attenuated
reflectivity measurements does not modify the frequencies but does, indeed, allow one to
change the general aspect of the spectra.

The expression for r in the absence of damping provides some explanation for the above

described results. One finds

r = 1
2

{
(qi cos[ϕ1] + iq1 sin[ϕ1])(q2

1 − g2)(δx q2 sin[ϕ2] − cos[ϕ2]) − (qi cos[ϕ2] + iq2 sin[ϕ2])(q2
2 − g2)(δx q1 sin[ϕ1] − cos[ϕ1])

(qi cos[ϕ1] − iq1 sin[ϕ1])(q2
1 − g2)(δx q2 sin[ϕ2] − cos[ϕ2]) − (qi cos[ϕ2] − iq2 sin[ϕ2])(q2

2 − g2)(δx q1 sin[ϕ1] − cos[ϕ1])

+
(qi sin[ϕ1] − iq1 cos[ϕ1])(q2

1 − g2)(δx q2 cos[ϕ2] + sin[ϕ2]) − (qi sin[ϕ2] − iq2 cos[ϕ2])(q2
2 − g2)(δx q1 cos[ϕ1] + sin[ϕ1])

(qi sin[ϕ1] + iq1 cos[ϕ1])(q2
1 − g2)(δx q2 cos[ϕ2] + sin[ϕ2]) − (qi sin[ϕ2] + iq2 cos[ϕ2])(q2

2 − g2)(δx q1 cos[ϕ1] + sin[ϕ1])

}

(28)

where

ϕ1 = q1d

2
; ϕ2 = q2d

2
. (29)

The transmission coefficient t is simply obtained by reversing the sign of the second term
inside the external parentheses { }.

Let us evaluate r when, for instance, in equation (29) one states

δx q1 sin[q1d/2] − cos[q1d/2] = 0. (30)

Expression (30) is identical to equation (25) which allows one to calculate the frequencies
of the surface and of the guided modes at zero wavevector in the electrostatic approximation
using equation (24). As pointed out in the preceding section the exact frequencies of these
modes are very close to the values derived in the electrostatic approximation and show a
very small dispersion versus k. Consequently, when it exists, the imaginary solution of
equation (30) provides a q1 value corresponding to a frequency which practically identifies
itself with that of the even surface mode evaluated at zero wavevector under this approximation.
It immediately results from equation (30) that the first term inside the brackets in equation (28)
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Figure 6. TE computed reflection spectra of thin films with a negative extrapolation length,
surrounded by vacuum: θ = 30◦; �X = −5 nm. Thicknesses: 30 nm (left column) and 90 nm
(right column). Damping: γ = 0, 0.01, 0.1, 0.2 (from top to bottom). The broken curves show the
reference (εb) spectra. The full dots indicate the positions of the surface and of the guided modes,
calculated at zero wavevector in the electrostatic approximation. The arrows indicate the positions
of the even surface mode and of the even guided modes.

is of modulus 1—due to the fact that, in the frequency range explored, |g2−q2
1 | 	 |g2−q2

2 |, the
second term inside the brackets is approximately equal to the first one and, consequently, r is
of modulus 1, which means that R = 1. An analogous argument starting from the replacement
of q1 by q2 in equation (30) can be developed for the even guided modes.

With the values of the parameters used in figure 6, −δx is significantly smaller than d: it
results that the first frequency maximum only weakly depends on d and is approximately given
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Figure 7. TE computed reflection spectra of a thin film with a positive extrapolation length,
surrounded by vacuum: θ = 30◦; �X = +5 nm. Thickness: 30 nm. Damping: γ = 0 (left) and
γ = 0.01 (right). The broken curves show the reference (εb) spectra. The full dots indicate the
positions of the surface and of the guided modes, calculated at zero wavevector in the electrostatic
approximation. The arrows indicate the positions of the even surface mode and of the even guided
modes.

Figure 8. TE computed transmission spectra of thin films with negative or positive extrapolation
lengths, surrounded by vacuum. Thickness: 30 nm; θ = 30◦ . Damping: γ = 0.01; �X = −5 nm
(left) and �X = +5 nm (right). The broken curves show the reference (εb) spectra. The full dots
indicate the positions of the surface and of the guided modes, calculated at zero wavevector in the
electrostatic approximation.

by (22): for negative δx subjected to |δx | 	 d , the first maximum, which occurs below ωt

and is expected to be easily observed, allows one to evaluate s/δ2
x . With the help of the other

maxima related to the guided modes it is, in principle, possible to evaluate s and δ2
x separately,

but the precision could be poor. Note that for large p values the frequencies of the guided
modes only weakly depend upon δx and are given by

ωex,{p} =
(

ω2
t +

4π2s

d2
p2

)1/2

. (31)

When the studied extrapolation length is positive, the determination of δx and of s is not
expected to be easy: however, due to the features arising from the guided modes, this
determination is not hopeless.

Thin film on a substrate. We now consider the case of a film lying on a semi-infinite substrate:
this system generally possesses two distinct tangential extrapolation lengths δx,1 and δx,2. In
the following we have chosen ε1 = 1 (vacuum), as previously, and ε2 = ε∞, but this choice
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Figure 9. TE computed reflection spectra of a thin film lying on a substrate and showing two
different negative extrapolation lengths: θ = 72◦; �X1 = −4 nm, �X2 = −6 nm, ε1 = 1, ε2 = 5.
Thickness: 30 nm. Damping: γ = 0 (left) and γ = 0.01 (right). The full dots indicate the
positions of the surface and of the guided modes, calculated at zero wavevector in the electrostatic
approximation. The full arrows indicate the positions of the surface modes. The broken curves
show the reference (εb) spectra.

is not essential. A computed reflection spectrum is shown in figure 9 for a film thickness
of 30 nm without damping, in which both δx,1 and δx,2 are taken negative (�X,1 = −4 nm,
�X,2 = −6 nm); here again, this spectrum significantly differs from the one obtained with
a conventional dielectric medium presenting the reference permittivity εb and shows a set of
several maxima. Figure 9 also provides the spectrum in the presence of a small damping
(γ = 0.01); the above mentioned features are still present, but, as usual, the maxima decrease
and the corresponding peaks broaden.

The frequencies of the maxima do not appreciably differ from the frequencies of the
surface modes (when they exist) and of the guided modes at zero wavevector as evaluated in
the electrostatic approximation. The calculation of these frequencies is a simple extension of
the previously published one in the case of a symmetric surrounding [17]. The required solution
is a linear combination of two exponential functions varying as exp[iχz] and exp[−iχz] where,
from equations (5), χ is a solution of

exp[2iχd] = (iχδx,1 − 1)(iχδx,2 − 1)

(iχδx,1 + 1)(iχδx,2 + 1)
. (32)

The frequency related to any solution χx,{n} of equation (32) is written as

ωx,{n} = (ω2
t + sχ2

x,{n})
1/2. (33)

The imaginary χ values describe surface modes while the real ones define guided modes. Note
that when δx,1 = δx,2 equation (33) splits into two independent equations which separately
provide the even and odd modes considered in the previous subsection. In the case of an
unsymmetrical surrounding the modes are neither even nor odd. The existence of surface
modes necessitates negative values of at least one of the extrapolation lines. A complete
discussion is tedious. However, let us note that when δx,1 and δx,2 are both negative and
subjected to (|δx,1| + |δx,2|) < d , two surface modes are present. This occurs in the case
illustrated in figure 9: the two first maxima are related to these surface modes; the further
maxima correspond to the guided modes. When |δx,1|/d 	 1 and |δx,2|/d 	 1 the frequencies
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of the two surface modes are written approximately as

ωsx,1 =
(

ω2
t − s

δ2
x,1

)1/2

; ωsx,2 =
(

ω2
t − s

δ2
x,2

)1/2

. (34)

Figure 9 illustrates this situation. In this case the values of δx,1 and δx,2 do not differ much from
each other, which means that the surrounding does not differ much from a symmetrical one: it
results that the succession of guided modes provokes alternate large and small perturbations (in
the spectrum of a conventional dielectric medium). For large enough q values the frequency of
the qth guided mode weakly depends on the extrapolation lengths and is approximately given
by

ωq =
(

ω2
t +

π2s

d2
(q + 1)2

)1/2

. (35)

To summarize, in the same way as for the case of free symmetric films, it looks possible
to derive the two extrapolation lengths and the spatial dispersion term for a thin film lying
on a dielectric substrate. However, such an evaluation will be significantly easier when the
extrapolation lengths are negative.

3.2.2. TM propagation. It is important to note that at normal incidence it is not possible
to distinguish a TM from a TE spectrum. As long as one increases the angle of incidence,
the differences between TE and TM spectra increase. In order to provide evidence for the
characteristic features induced by the TM geometry it is then necessary to use a rather large
angle of incidence (or to take advantage of an attenuated reflection mounting). At this stage we
recall that, even for conventional dielectric thin films, the TE and TM reflection spectra show
large differences: in the TE geometry the reflectivity is non-negligible only within a spectral
range around the transverse ωt frequency; in the TM polarization the reflectivity shows an
additional broad peak of intensity in the vicinity of the longitudinal frequency ωl.

As shown in figure 10, for the first spectral range around ωt the TM reflectivity spectra
reproduce the singularities appearing in the TE spectra: they only depend on the tangential
extrapolation lengths and on the spatial dispersion coefficient s. In addition, in the high
frequency region around ωl and slightly above, additional features related to the normal
extrapolation lengths (δz for a free symmetric film, δz,1 and δz,2 in the case of a film lying
on a dielectric substrate) are expected. The frequencies for which these perturbations of the
reflectivity appear are again found to lie very close to the frequencies of the surface and of
the guided modes connected to ωl (rather than ωt as in the previous evaluations) calculated
at zero wavevector in the electrostatic approximation. For instance, in the case of negative
extrapolation lengths of low enough amplitude, reflectivity maxima occur at

ωsz,1 =
(

ω2
l − s

δ2
z,1

)1/2

and ωsz,2 =
(

ω2
l − s

δ2
z,2

)1/2

. (36)

In figure 11 we present the transmission spectrum of a film of thickness 30 nm with a γ = 0.01
damping factor; the frequency minima now lie at the maxima of the reflection spectrum (see
figure 10), as expected. Here again, in the case of a free thin film, only frequencies of the even
modes are expected to be detectable. Practically, the effects of the tangential extrapolation
length are independent of those of the normal extrapolation length, as is the case for the semi-
infinite medium studied in the previous section. However, note that the flattening related to the
damping is much more efficient for the singularities associated with δz than for those associated
with δx . The general expressions for r and t are easily derived (see the appendix) but they are
rather heavy and commenting on them is tedious work.
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Figure 10. TM reflection spectra of a thin film with negative extrapolation lengths �X and �Z ,
surrounded by vacuum; θ = 81◦; �X = −5 nm, �Z = −5 nm. Thickness: 30 nm. Damping:
γ = 0 (upper row) and γ = 0.01 (lower row). Spectral ranges: around ωt (left column) and around
ωl (right column). The broken curves show the reference (εb) spectra. The full dots indicate the
positions of the surface and of the guided modes, calculated at zero wavevector in the electrostatic
approximation. The arrows indicate the positions of the even surface mode and of the even guided
modes.

Figure 11. TM transmission spectra of a thin film with negative extrapolation lengths �X and
�Z , surrounded by vacuum; θ = 81◦; �X = −5 nm, �Z = −5 nm. Thickness: 30 nm.
Damping: γ = 0.01. Spectral ranges: around ωt (left) and around ωl (right). The broken curves
show the reference (εb) spectra. The full dots indicate the positions of the surface and of the guided
modes, calculated at zero wavevector in the electrostatic approximation.

In figure 12, results for a film of thickness 30 nm lying on a dielectric substrate are
presented, assuming different negative values of the extrapolation lengths on each side
(�X,1 = �Z,1 = −4 nm, �X,2 = �Z,2 = −6 nm), with γ = 0.01. As previously mentioned
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Figure 12. TM computed reflection (left column) and transmission (right column) spectra of a
thin film lying on a substrate and showing different negative extrapolation lengths on each side;
θ = 81◦; �X,1 = �Z ,1 = −4 nm, �X,2 = �Z ,2 = −6 nm, ε1 = 1, ε2 = 5. Thickness: 30 nm.
Damping: γ = 0.01. Spectral ranges: around ωt (upper row) and around ωl (lower row). The
broken curves show the reference (εb) spectra. The full dots indicate the positions of the surface
and of the guided modes, calculated at zero wavevector in the electrostatic approximation. The
arrows indicate the positions of the surface modes and of the guided modes.

Table 2. A review of the expected optical singularities. (In symmetrically surrounded films, the
odd modes give rise to very weak and presumably undetectable singularities.)

Expected singularity types in spectra

Systems TE TM

Semi-infinite medium * Surface: ωsx (for δx < 0) * Surface: ωsx (for δx < 0)
(reflection) ** Surface: ωsz (for δz < 0)

Symmetrically surrounded film * Surface: even ωex,{p=0} * Surface: even ωex,{p=0} (for δx < 0)
(reflection and transmission) (for δx < 0) + even ωez,{p=0} (for δz < 0)

** Guided: even ωex,{p �=0} ** Guided: even ωex,{p �=0}
+ even guided ωez,{p �=0}

Unsymmetrically surrounded film * Surface: (for δx,1 < 0 * Surface: (for δx,1 < 0 or δx,2 < 0),
(reflection and transmission) or δx,2 < 0), one or two one or two frequencies

frequencies (see the text) + surface: (for δz,1 < 0 or δz,2 < 0),
one or two frequencies

** Guided: no restriction ** Guided: no restriction

for the TE case, the whole set of surface and guided modes is now implied. The features related
to δz,1 and δz,2 remain more affected by the damping.

In principle, it would be possible to evaluate �Z (or �Z,1 and �Z,2): however, the intensity
variations are smaller in the spectral region concerned close to ωl than around ωt and we thus
believe that the experimental determinations will be difficult, especially in the case of positive
extrapolation lengths.
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4. Conclusion

We have discussed the dependence of the optical properties of surface and thin films upon
the parameters which allow one to monitor the size effects on nanostructured ferroelectric
systems. We have given evidence that, when the damping constant γ does not exceed a few
tenths, reflection and transmission spectra are expected to be significantly affected, even in the
paraelectric state above the temperature of the transition. The main expected perturbations are
schematically presented in table 2. We have shown that both the extrapolation lengths and the
spatially dispersive gradient terms appearing in the free energy modify the reflectivity and the
transmittivity of thin films. However, for film thicknesses not exceeding a few hundreds of
nanometres, in the absence of surface energy (i.e. in the limit of vanishing inverse extrapolation
lengths) the gradient terms only very weakly contribute to the modification of the spectra, at
least for the generally accepted orders of magnitude of these terms. In contrast, the occurrence
of extrapolation lengths with absolute values of a few nanometres has a strong effect on
the spectra: they introduce reflection maxima (and, simultaneously, transmission minima) at
frequencies which are very easy to evaluate since they practically coincide with the frequencies
of the surface and guided modes of the structures studied calculated at zero wavevector in
the electrostatic approximation. The infrared spectra are then expected to allow a direct
measurement of the tangential and normal algebraic interfacial extrapolation lengths and of
the dispersive gradient terms. It is apparent from our discussion that this technique would
be particularly convenient for the detection of negative extrapolation lengths, the existence of
which is still a subject of controversy. However, it must be noted that an overdamping of the soft
mode is frequently observed; this happens for instance in BaTiO3 [21]. Such an overdamping
prevents the optical detection of the above discussed dispersion and surface effects. In contrast,
reasonably small values of γ have been measured in other ferroelectrics, at least for the ordered
phase; this is the case for PbTiO3, for example [22–25]. One can then hope that, using
appropriate materials, it will be possible to get access to surface and spatial dispersion terms.
On the other hand, it is of interest to note that, in principle, the calculations developed in the
present paper are able to describe the combined effect of the dispersion of the optical phonons
and hypothetical interface energy terms on the optical properties of standard dielectric thin
film: however, the values of the dispersion parameter S usually found are presumably too small
to induce easily experimentally detectable features. Infrared spectroscopy was successfully
used in the past in order to study the softening of the vibrational dynamics in the vicinity of
the phase transitions of ferroelectric bulk materials. More recently, it was extended to the
search for size effects in thin films [26]. We hope that the present work will encourage new
experimental investigations in this domain.
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Appendix. Expressions for the reflection and transmission coefficients

The continuity of the tangential component of the electric field E (EY for the TE solutions, EX

for the TM ones) and of the magnetic field H (HX for the TE solutions, HY for the TM ones)
and the boundary conditions related to the surface terms in the free energy (involving �X only
for the TE solutions, both �X and �Z for the TM ones) provide the appropriate numbers of
linear equations required in order to derive r and t .
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A.1. Semi-infinite medium

For the TE propagation r was given in equation (19). For the TM propagation one finds

r = {(q1qi − k2)(qi − q1)(q
2
1 − g2)A1 − (q2qi − k2)

× (qi − q2)(q
2
2 − g2)A2 − k(q2

i + k2)(q2
3 − g2)A3}

× {(q1qi + k2)(qi + q1)(q
2
1 − g2)A1 − (q2qi + k2)(qi + q2)(q

2
2 − g2)A2

− k(q2
i + k2)(q2

3 − g2)A3}−1 (A.1)

with

A1 = q2q3(q2 + i/δx)(q3 + i/δz) + k2(q2 + i/δz)(q3 + i/δx)

A2 = q1q3(q1 + i/δx)(q3 + i/δz) + k2(q1 + i/δz)(q3 + i/δx)

A3 = q1k(q1 + i/δx)(q2 + i/δz) − q2k(q1 + i/δz)(q2 + i/δx).

It can be easily seen that for k = 0, expression (A.1) reduces to equation (19) at k = 0, as
expected.

A.2. Thin film

A.2.1. TE propagation. The r and t values for a TE propagation with a thin film lying on a
substrate are given by

r = A22 D1 − A12 D2

A11 A22 − A12 A21
; t = A11 D2 − A21 D1

A11 A22 − A12 A21
(A.2)

where

A11 = U{(q2 cos[ϕ2] + σ sin[ϕ2]/2)(q2
1 − g2)(iq1 cos[ϕ1] + qi sin[ϕ1])

− (q1 cos[ϕ1] + σ sin[ϕ1]/2)(q2
2 − g2)(iq2 cos[ϕ2] + qi sin[ϕ2])}

+ V �/2{cos[ϕ2](q2
1 − g2)(−iq1 sin[ϕ1] + qi cos[ϕ1])

− cos[ϕ1](q2
2 − g2)(−iq2 sin[ϕ2] + qi cos[ϕ2])}

A12 = −U{(q2 cos[ϕ2] + σ sin[ϕ2]/2)(q2
1 − g2)(iq1 cos[ϕ1] + qt sin[ϕ1])

− (q1 cos[ϕ1] + σ sin[ϕ1]/2)(q2
2 − g2)(iq2 cos[ϕ2] + qt sin[ϕ2])}

+ V �/2{cos[ϕ2](q2
1 − g2)(−iq1 sin[ϕ1] + qt cos[ϕ1])

− cos[ϕ1](q2
2 − g2)(−iq2 sin[ϕ2] + qt cos[ϕ2])}

A21 = V {(q2 sin[ϕ2] − σ cos[ϕ2]/2)(q2
1 − g2)(−iq1 sin[ϕ1] + qi cos[ϕ1])

− (q1 sin[ϕ1] − σ cos[ϕ1]/2)(q2
2 − g2)(−iq2 sin[ϕ2] + qi cos[ϕ2])}

− U�/2{sin[ϕ2](q2
1 − g2)(iq1 cos[ϕ1] + qi sin[ϕ1])

− sin[ϕ1](q2
2 − g2)(iq2 cos[ϕ2] + qi sin[ϕ2])}

A22 = V {(q2 sin[ϕ2] − σ cos[ϕ2]/2)(q2
1 − g2)(−iq1 sin[ϕ1] + qt cos[ϕ1]) (A.3)

− (q1 sin[ϕ1] − σ cos[ϕ1]/2)(q2
2 − g2)(−iq2 sin[ϕ2] + qt cos[ϕ2])}

+ U�/2{sin[ϕ2](q2
1 − g2)(iq1 cos[ϕ1] + qt sin[ϕ1])

− sin[ϕ1](q2
2 − g2)(iq2 cos[ϕ2] + qt sin[ϕ2])}

D1 = U{(q2 cos[ϕ2] + σ sin[ϕ2]/2)(q2
1 − g2)(−iq1 cos[ϕ1] + qi sin[ϕ1])

− (q1 cos[ϕ1] + σ sin[ϕ1]/2)(q2
2 − g2)(−iq2 cos[ϕ2] + qi sin[ϕ2])}

+ V �/2{cos[ϕ2](q2
1 − g2)(iq1 sin[ϕ1] + qi cos[ϕ1])



Surface energy and spatial dispersion in ferroelectrics 1869

− cos[ϕ1](q2
2 − g2)(iq2 sin[ϕ2] + qi cos[ϕ2])}

D2 = V {(q2 sin[ϕ2] − σ cos[ϕ2]/2)(q2
1 − g2)(iq1 sin[ϕ1] + qi cos[ϕ1])

− (q1 sin[ϕ1] − σ cos[ϕ1]/2)(q2
2 − g2)(iq2 sin[ϕ2] + qi cos[ϕ2])}

− U�/2{sin[ϕ2](q2
1 − g2)(−iq1 cos[ϕ1] + qi sin[ϕ1])

− sin[ϕ1](q2
2 − g2)(−iq2 cos[ϕ2] + qi sin[ϕ2])}

with

U = q1 cos[ϕ2] sin[ϕ1] − q2 cos[ϕ1] sin[ϕ2]

V = q1 cos[ϕ1] sin[ϕ2] − q2 cos[ϕ2] sin[ϕ1]
(A.4)

and

σ = δx,1 + δx,2

δx,1 δx,2
; � = δx,1 − δx,2

δx,1 δx,2
. (A.5)

In the above equations qt = (ε2ω
2 −k2)1/2 stands for the normal component of the transmitted

wavevector. In the case of symmetrical surroundings (ε1 = ε2), the expression for r in
equations (A.2) reduces to equation (28).

A.2.2. TM propagation. The general expressions for an unsymmetrical surrounding are rather
complicated. In the case of a symmetrical surrounding, one obtains simpler equations (A.6):

r = 1

2

{
α1a(q2

1 − g2)M1 − α2a(q2
2 − g2)M2 − α3(q2

3 − g2)M3

α1b(q2
1 − g2)M1 − α2b(q2

2 − g2)M2 − α3(q2
3 − g2)M3

+
β1b(q2

1 − g2)N1 − β2b(q2
2 − g2)N2 − β3(q2

3 − g2)N3

β1a(q2
1 − g2)N1 − β2a(q2

2 − g2)N2 − β3(q2
3 − g2)N3

}

t = 1

2

{
α1a(q2

1 − g2)M1 − α2a(q2
2 − g2)M2 − α3(q2

3 − g2)M3

α1b(q2
1 − g2)M1 − α2b(q2

2 − g2)M2 − α3(q2
3 − g2)M3

− β1b(q2
1 − g2)N1 − β2b(q2

2 − g2)N2 − β3(q2
3 − g2)N3

β1a(q2
1 − g2)N1 − β2a(q2

2 − g2)N2 − β3(q2
3 − g2)N3

}
(A.6)

where

α ja = q j(k
2 + q2

i ) cos[ϕ j ] + iqi(k
2 + q2

j ) sin[ϕ j ] ( j = 1, 2)

α jb = q j(k
2 + q2

i ) cos[ϕ j ] − iqi(k
2 + q2

j ) sin[ϕ j ] ( j = 1, 2)

α3 = k(k2 + q2
i ) cos[ϕ3] with: ϕ3 = q3d/2

β ja = q j(k
2 + q2

i ) sin[ϕ j ] + iqi(k
2 + q2

j ) cos[ϕ j ] ( j = 1, 2)

β jb = q j(k
2 + q2

i ) sin[ϕ j ] − iqi(k
2 + q2

j ) cos[ϕ j ] ( j = 1, 2)

β3 = k(k2 + q2
i ) sin[ϕ3]

(A.7)
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and

M1 = q2q3(q2 sin[ϕ2] − cos[ϕ2]/δx)(q3 cos[ϕ3] + sin[ϕ3]/δz)

+ k2(q3 sin[ϕ3] − cos[ϕ3]/δx)(q2 cos[ϕ2] + sin[ϕ2]/δz)

N1 = q2q3(q2 cos[ϕ2] + sin[ϕ2]/δx)(q3 sin[ϕ3] − cos[ϕ3]/δz)

+ k2(q3 cos[ϕ3] + sin[ϕ3]/δx)(q2 sin[ϕ2] − cos[ϕ2]/δz)

M2 = q3q1(q1 sin[ϕ1] − cos[ϕ1]/δx)(q3 cos[ϕ3] + sin[ϕ3]/δz)

+ k2(q3 sin[ϕ3] − cos[ϕ3]/δx)(q1 cos[ϕ1] + sin[ϕ1]/δz)

N2 = q3q1(q1 cos[ϕ1] + sin[ϕ1]/δx)(q3 sin[ϕ3] − cos[ϕ3]/δz)

+ k2(q3 cos[ϕ3] + sin[ϕ3]/δx)(q1 sin[ϕ1] − cos[ϕ1]/δz)

M3 = kq1(q1 sin[ϕ1] − cos[ϕ1]/δx)(q2 cos[ϕ2] + sin[ϕ2]/δz)

− kq2(q2 sin[ϕ2] − cos[ϕ2]/δx)(q1 cos[ϕ1] + sin[ϕ1]/δz)

N3 = kq1(q1 cos[ϕ1] + sin[ϕ1]/δx)(q2 sin[ϕ2] − cos[ϕ2]/δz)

− kq2(q2 cos[ϕ2] + sin[ϕ2]/δx)(q1 sin[ϕ1] − cos[ϕ1]/δz).

(A.8)

Here again, it is easily seen that when k = 0, expression (A.6) reduces to equation (28) at
k = 0, as expected.
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